BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

vol. 43

2076-2079 (1970)

Chemical Effects Associated with the β-Decay Process. V. Kinetic Studies of the Chemical Behavior of the ¹⁴⁴Pr Formed by the Decay of the ¹⁴⁴Ce(III)-Ethylenediaminetetraacetate and ¹⁴⁴Ce(III)-trans-1,2-Diaminocyclohexane-N,N'-tetraacetate

Takanobu Shiokawa, Hiroaki Kido and Takashi Omori

Department of Chemistry, Faculty of Science, Tohoku University, Katahira, Sendai

(Received December 13, 1969)

The chemical effects associated with the β -decay of ¹⁴⁴Ce(III)-aminopolycarboxylate complexes have been further investigated. The chemical behavior of ¹⁴⁴Pr was analyzed kinetically on the basis of the isotopic exchange-reaction mechanism. The formation of the intermediate complex produced by an intramolecular electron transfer of the ¹⁴⁴Pr(IV)-aminopolycarboxylate following the β -decay of ¹⁴⁴Ce(III) complex was also confirmed. In the ethylenediaminetetraacetate and trans-1,2-diaminocyclohexane-N,N'-tetraacetate systems, the values for the bond-rupture of the daughter complex ions are fairly much larger than in the diethylenetriaminepentaacetate system, suggesting that a kinetically-excited intermediate complex decomposes to a free ion to some extent.

In the β -decay of the ¹⁴⁴Ce(III)-ethylenediaminetetraacetate(¹⁴⁴Ce(III)-EDTA) complex, the formation of an intermediate complex has been proposed on the basis of kinetic treatments.^{1,2)} Further investigation of the ¹⁴⁴Ce(III)-diethylenetriaminepentaacetate(¹⁴⁴Ce(III)-DTPA) complex revealed that an exhaustive bond-rupture of the daughter complex ion involves 25 per cent of the ¹⁴⁴Pr formed by the decay of the parent complex.³⁾

Recently, Glentworth and Wright⁴) have reported on the chemical behavior of $^{144}\text{Pr}/^{143}\text{Pr}$ in the aminopolycarboxylate complexes, and have proposed that a substantial fraction of the break-up of $^{144}\text{Pr}/^{143}\text{Pr}$ results in the multiple charging of the daughter complex as a result of the internal conversion of γ -rays and electron shake-off, as has already been pointed out in our previous papers. 2,3 0 However, the deactivation processes do not seem to have been established.

In order to confirm the stabilization process of ¹⁴⁴Pr on the basis of our model, the chemical behavior of ¹⁴⁴Pr was investigated in the ¹⁴⁴Ce(III)-trans-1,2-diaminocyclohexane-N,N'-tetraacetate (¹⁴⁴Ce(III)-DCTA) complex system. Furthermore, some additional experiments in the EDTA complex system were carried out.

Experimental

G.R.-grade EDTA and DCTA were used without

further purification. The chelating agent solutions were standardized against a standard zinc(II) solution by volumetric titration, using Eriochrome Black T as an indicator. All the other chemicals and the experimental procedures employed here were substantially the same as those described previously.²⁾

Results

Isotopic Exchange Reaction. Kinetic experiments on the exchange reaction,

$$^{144}\text{Ce}^{3+} + \text{Ce}Y^{-} \iff ^{144}\text{Ce}Y^{-} + \text{Ce}^{3+}$$
 (1)

in the pH range from 4 to 7 at 25° C and at 5° C were carried out; here, Y⁴⁻ indicates the tetravalent EDTA and DCTA anions. The exchange rate between the uncomplexed cerium(III) ion and cerium(III)-aminopolycarboxylate can be expressed as follows:

For the EDTA complex system:

$$R = k_{\text{Ce}}[\text{H}^+][\text{CeY}^-] \tag{2}$$

For the DCTA complex system:

$$R = k_{\text{Ce}}[H^+][\text{CeY}^-] + k'_{\text{Ce}}[\text{CeY}^-]$$
 (3)

The isotopic exchange rate constants, k_{Pr} and k'_{Pr} , for the analogous systems of praseodymium(III) have also been calculated using the equilibrium constant, K, for the substitution reaction³⁾:

$$^{144}\text{Ce}^{3+} + \text{PrY}^{-} \rightleftharpoons ^{144}\text{CeY}^{-} + \text{Pr}^{3+}$$
 (4)

The equilibrium constants, K, were obtained as 0.47, for the EDTA complex system and 0.47, for the DCTA complex system. The isotopic exchange rate constants for these systems are summarized in Table 1.

¹⁾ T. Shiokawa, H. Kudo and T. Omori, This Bulletin, **38**, 1340 (1965).

²⁾ T. Shiokawa and T. Omori, ibid., 38, 1893 (1965).

³⁾ T. Shiokawa and T. Omori, ibid., 42, 696 (1969).

⁴⁾ P. Glentworth and C. L. Wright, J. Inorg. Nucl. Chem., 31, 1263 (1969).

TABLE 1. ISOTOPIC EXCHANGE REACTION RATE CONSTANTS

		Ce	Pr
EDTA			
$k \ (l \cdot \text{mol}^{-1} \cdot \text{min}^{-1})$	$25^{\circ}\mathrm{C}$	2.1×10^{5}	1.0×10^{5}
	$5^{\circ}\mathbf{C}$	4.7×10^4	2.1×10^4
DCTA			
$k \ (l \cdot \text{mol}^{-1} \cdot \text{min}^{-1})$	$25^{\circ}\mathrm{C}$	$5.7_{5} \times 10^{3}$	2.7×10^{3}
	$5^{\circ}\mathrm{C}$	7.8×10^2	3.7×10^{2}
$k' \pmod{-1}$	$25^{\circ}\mathrm{C}$	8.3×10^{-3}	3.9×10^{-3}
	$5^{\circ}\mathbf{C}$	5.5×10^{-4}	2.6×10^{-4}

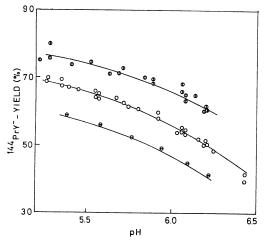


Fig. 1. Dependence of the 144PrY--yield on pH at 25°C in the EDTA complex system.

[Ce³⁺] [CeY-]
①:
$$1.21 \times 10^{-4} \text{ M}$$
; $1.00 \times 10^{-4} \text{ M}$
○: 0.808×10^{-4} ; 1.00×10^{-4}
 \ominus : 0.808×10^{-4} ; 1.50×10^{-4}
Solid curves were calculated by Eq. (11).

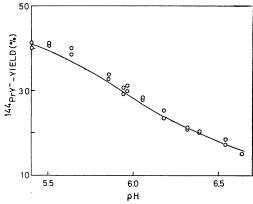


Fig. 2. Dependence of the 144PrY--yield on pH at 5°C in the EDTA complex system.

$$[Pr^{3+}]$$
= $[PrY^-]$ =1.14×10⁻⁴ M Solid curve was calculated by Eq. (11).

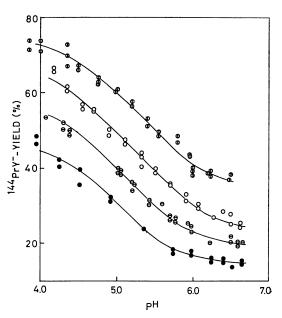


Fig. 3. Dependence of the ¹⁴⁴PrY--yield on pH at 25°C in the DCTA complex system.

[Ce³⁺] [CeY⁻]
①:
$$1.00 \times 10^{-4}$$
 M; 1.50×10^{-4} M
○: 1.00×10^{-4} ; 1.00×10^{-4}
⊖: 1.50×10^{-4} ; 1.00×10^{-4}
●: $[Pr^{3+}] = [PrY^{-}] = 1.00 \times 10^{-4}$ M
Solid curves were calculated by Eq. (11).

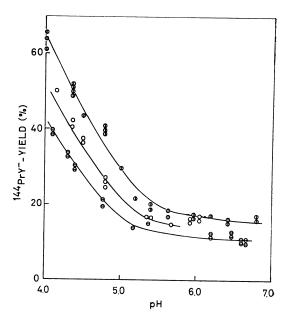


Fig. 4. Dependence of the 144PrY--yield on pH at 5°C in the DCTA complex system.

	[Ce ^{s+}]	[CeY-]
Œ): $1.00 \times 10^{-4} \text{ m}$;	$1.50 \times 10^{-4} \text{ M}$
\subset	1.00×10^{-4} ;	1.00×10^{-4}
\in	$0: 1.50 \times 10^{-4}$;	1.00×10^{-4}
S	olid curves were	calculated by Eq. (11).

Chemical Behavior of ¹⁴⁴**Pr.** After complete equilibration with respect to ¹⁴⁴Ce in the systems represented by Eqs. (1) and (4) had been attained chemically, the yield of ¹⁴⁴Pr(III)-aminopolycarboxylate (¹⁴⁴PrY⁻-yield) was obtained as a function of pH at 25° and 5°C. The ¹⁴⁴PrY⁻-yield is defined as the ratio of the γ-activity of the eluate to the total γ-activity. The results are shown in Figs. 1—4. In these experiments, the praseodymium ions are carrier-free when the carriers of the Ce(III) ion and Ce(III)-aminopolycarboxylate exist in aqueous solutions, and *vica versa*.

In both the systems, the ¹⁴⁴PrY⁻-yield decreases gradually with the pH, while in the DCTA complex system it seems to be constant in the higher pH regions. On the contrary, all the ¹⁴⁴PrY⁻-yield curves in the lower pH region exhibit asymptotic approaches to the equilibrium values, as is to be expected from the equilibrium constants of Reaction (4).

Discussion

The chemical behavior of the 144Pr formed by the decay of 144Ce(III)-DTPA was successfully explained on the basis of kinetic considerations as follows.3) The praseodymium(IV)-DTPA complex was promptly reduced by an intramolecular electron-transfer. The trivalent 144Pr, which remains complexed with a degradated DTPA radical, decomposes to a free ion by the dissociation in the substitution reaction. The uncomplexed ¹⁴⁴Pr(III) ion is also produced directly by an exhaustive decomposition of the daughter complex ion, without any formation of the intermediate. These stabilization processes of 144Pr are considered to be valid also in the aminopolycarboxylate complex systems studied in this paper. Thus, the chain reactions for the stabilization of 144Pr can be expressed as follows:

where $\lambda_{\rm Ce}$ and $\lambda_{\rm Pr}$ are the decay constants of ¹⁴⁴Ce and ¹⁴⁴Pr respectively, where $\lambda_{\rm Ce\, Y}$ and $\lambda_{\rm Pr\, Y}$ denote the respective exchange-rate constants of ¹⁴⁴Ce³⁺ and ¹⁴⁴Pr³⁺ with the aminopolycarboxylate com-

plex, where λ_d is the decomposition rate constant of the intermediate ($^{144}\text{Pr}(\text{III})\text{Z}$), and where α is the ratio of bond-rupture, which is defined as the ratio of the $^{144}\text{Pr}^{3+}$ produced directly from $^{144}\text{Ce-}(\text{III})$ -aminopolycarboxylate without any formation of the intermediate possessing a finite life-time.

In Eq. (6), the fractions of $\lambda_{\rm Pr}N_3$, $\lambda_{\rm Pr}N_4$, $\lambda_{\rm Pr}N_6$, and $\lambda_{\rm Pr}N_8$ give the ¹⁴⁴PrY⁻-yield, supposing that, upon separation, the intermediate complex is not adsorbed on the ion-exchange resin. When the chemical equilibrium with respect to ¹⁴⁴Ce had been attained, and when the ¹⁴⁴Pr initially present had decayed out, the ¹⁴⁴PrY⁻-yield was obtained; therefore, the solution of Bateman's equation⁵⁾ for the respective fractions are given for the system ascribed by Eq. (1) as follows:

$$\lambda_{Pr}N_{3} = \lambda_{Ce}N_{1} \cdot \frac{\lambda_{PrY}}{\lambda_{Pr} + \lambda_{PrY}} \cdot \frac{[Ce^{3+}]_{e}}{[Ce^{3+}]_{e} + [CeY^{-}]_{e}}$$

$$\times \frac{[^{144}PrY^{-}]_{e}}{[^{144}PrY^{-}]_{e}}$$

$$\lambda_{Pr}N_{4} = \lambda_{Ce}N_{1} \cdot \frac{(1-\alpha)\lambda_{Pr}}{\lambda_{Pr} + \lambda_{d}} \cdot \frac{[CeY^{-}]_{e}}{[Ce^{3+}]_{e} + [CeY^{-}]_{e}}$$
(8)
$$\lambda_{Pr}N_{6} = \lambda_{Ce}N_{1} \cdot \frac{(1-\alpha)\lambda_{Pr}Y\lambda_{d}}{(\lambda_{Pr} + \lambda_{Pr}Y)(\lambda_{Pr} + \lambda_{d})}$$

$$\times \frac{[CeY^{-}]_{e}}{[Ce^{3+}]_{e} + [CeY^{-}]_{e}} \cdot \frac{[^{144}PrY^{-}]_{e}}{[^{144}PrY^{-}]_{e} + [^{144}PrY^{-}]_{e}}$$
(9)
$$\lambda_{Pr}N_{8} = \lambda_{Ce}N_{1} \cdot \frac{\alpha\lambda_{PrY}}{\lambda_{Pr} + \lambda_{PrY}} \cdot \frac{[CeY^{-}]_{e}}{[Ce^{3+}]_{e} + [CeY^{-}]_{e}}$$

$$\times \frac{[^{144}PrY^{-}]_{e}}{[^{144}PrY^{-}]_{e}}$$
(10)

where the effect of the disintegration of ¹⁴⁴Ce can be ignored. For the system expressed by Eq. (4), analogous equations are derived by exchanging the terms involving the concentrations of the metal ions. Thus, the ¹⁴⁴PrY⁻-yield is given by the sum of Eqs. (7)—(10); that is,

¹⁴⁴PrY⁻-yield(%) =
$$\frac{\lambda_{Pr}(N_3 + N_4 + N_6 + N_8)}{\lambda_{Ce}N_1} \times 100$$
 (11)

Since the values for λ_{Pr} and λ_{PrY} have already been established, the values for λ_d and α can be obtained by inserting the experimental values for the ¹⁴⁴PrY⁻-yields.

It was found that the ratio of the bond-rupture, α , is a constant independent of the temperature, while the λ_d depends on the temperature and is affected by the concentration of the hydrogen ion;

$$\lambda_d = k_d[\mathrm{H}^+] \tag{12}$$

The values for the decomposition rate constant, k_d , of the intermediate, $\Pr(\text{III})Z$, and for the α thus obtained are summarized in Table 2, together with the data obtained in the DTPA complex system.³⁾ The experimental and calculated values

⁵⁾ H. Bateman, Proc. Cambridge Phil. Soc., 15, 423 (1910).

Table 2. Decomposition rate constants of the intermediate complex and ratio of bond-rupture

	k_d * $(l \cdot \text{mol}^{-1} \cdot \text{min}^{-1})$	α
EDTA (25°C)	$(2.5\pm1)\times10^{5}$	0.7
$(5^{\circ}C)$	$(5\pm2) \times 10^4$	
DCTA (25°C)	$(3\pm1)\times10^{4}$	0.75
(5°C)	$(8\pm3)\times10^{3}$	
DTPA (25°C)	$(5\pm 2) \times 10^4$	0.25
(5°C)	$(2\pm1)\times10^4$	

^{*} $\lambda_d = k_d[H^+]$

for the ¹⁴⁴PrY--yields are compared in Figs. 1—4. The bond rupture of the daughter complex may be caused by the formation of a multiply-charged ¹⁴⁴Pr ion due to electron shake-off and the internal conversion of γ -rays, followed by the Auger process. In the DTPA-complex system, the ratio of the bond rupture of 0.25 corresponds to the extent of the formation of the multiply-charged 144Pr ion. In the EDTA- and DCTA-complex systems, the ratios of the bond rupture of 0.70 and 0.75 respectively are much larger than that in the DTPA complex system, indicating that there is involved another process, without any formation of a stable intermediate. This process may be accounted possibly by the recoil effect. In the β --decay of ¹⁴⁴Ce, the recoil energies imparted to free 144Pr atoms range from 0 to 1.6 eV. The probability of bond rupture as a result of recoil only is very small; however, a significant fraction of the β -decay of ¹⁴⁴Ce would leave the daughter complex in a kineticallyexcited state. Thus, by taking into consideration the fact that the activation energies for the decomposition of the intermediate are estimated to be about 10 kcal/mol, it is reasonable that the kinetically-excited decomposition of the intermediate should take place, resulting in the formation of

the uncomplexed 144Pr(III) ion.

In the DTPA-complex system, the kinetically-excited decomposition of the intermediate was not observed. The differences in the chemical behavior of ¹⁴⁴Pr in the DTPA complex system from that in the EDTA and DCTA complex systems may be attributed to the difference in the molecular structures of the chelates; that is, the EDTA and DCTA are hexadentate chelating agents, while the DTPA is an octadentate.

In view of the decomposition mechanism and rate constants, the stabilization processes of ¹⁴⁴Pr proposed in the DTPA-complex system³⁾ are further confirmed in the EDTA- and DCTA-complex systems. In addition, a new process of the kinetically-excited decomposition of the intermediate is proposed. The stabilization processes of ¹⁴⁴Pr are shown schematically in Fig. 5.

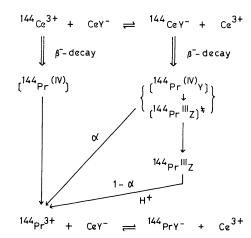


Fig. 5. Stabilization processes of ¹⁴⁴Pr produced by β ⁻-decay of ¹⁴⁴Ce in the aminopolycarboxylate complex system.